

Near-Term Multiple-Line Intensity Mapping

Tzu-Ching Chang

Jet Propulsion Laboratory
California Institute of Technology

Big bang, inflation Intensity Mapping of Formation of CMB Cosmic Structures Dark ages CMB temperature Cosmic dawn ~10⁷ modes Reionization Structure growth Dark energy domination Courtesy Cynthia Chiang Current Large-scale structure surveys (LSS) ~10⁶⁻⁷ modes

Courtesy Cynthia Chiang

Line Intensity Mapping (IM)

courtesy Phil Korngut

- •"Intensity Mapping" (Chang+ 2008, Wyithe & Loeb 2008):
 - •Measure the collective emission from a large region, more massive and luminous, without spatially resolving down to galaxy scales.
- Use spectral lines as tracers of structure, retain high frequency resolution thus redshift information
- Measure brightness temperature fluctuations on the sky: just like CMB temperature field, but in 3D
- Low-angular resolution redshift surveys: economical, large survey volumes
- Confusion-limited. Foreground-limited.

Intensity Mapping Sciences

A tracer of the 3D large-scale cosmic structures:

Luminosity-weighted density field

Astrophysics: L(M) Cosmology: P_L(k, z)

Brightness temperature fluctuations dT(θ, v)

(21cm, CO, [CII], Lya, Ha) Intensity Mapping Experiments

IM: a representative view of the Universe

IM vs. Spectro. Galaxy Surveys

w/Yun-Ting Cheng (Caltech), Roland de Putter, O. Doré

- Goal: map out the 3D large-scale structure by measuring the voxel luminosity L of a tracer in a 3D volume.
- Density field, δ , is traced by observable O(L).

- Spectro. galaxy survey: O(L) a step function.
 - O(L)=I, if $L>L_{th}$,
 - O(L)=0, otherwise. A digitized 3D map.
- IM: include all photons. O(L)=L.
 A continuous 3D map.

IM vs. Spectro. Galaxy Surveys *A Toy Model*

- Question: Given a tracer luminosity function $\Phi(l, \delta)$, what is the optimal observable, $O_{opt}(L)$?
- Tool: Use P(D) the voxel luminosity PDF in density field δ , $P(L, \delta)$, to derive $O_{opt}(L)$.
- Parameters:

 - Noise: assume Gaussian thermal noise $\rightarrow \sigma(L)$
 - Confusion noise: shot noise from fainter sources

 LSN
- Optimal Observable:

 - Calculate information context for IM and GD

Intensity Mapping (IM) vs. Galaxy Detection (GD)

Cheng et al., 2018

 ℓ_* – characteristic source luminosity σ_L – instrument noise $L_{\rm SN}$ – confusion scale

IM vs. Spectro. Galaxy Surveys

Cheng et al., 2018

21cm Intensity Mapping ℓ_* – characteristic source luminosity σ_L – instrument noise

 $L_{
m SN}$ – confusion scale

TIME in a nutshell

- A [CII] Intensity Mapper for EoR at 5.3 < z < 8.5
 - Covering 195-295 GHz at R~100 (183-326 GHz including atmosphere monitoring channels)
 - 32 grating spectrometers (2 polarizations)
 - 1920 TES bolometer detectors
 - I6 spatial pixels and 60 spectral channels
 - FoV: I I arcmin x 0.4 arcmin
 - Nominal survey: ~I deg x 0.4 arcmin
 - Engineering run now: Jan-March 2019
 - 1000 hours of winter observing time at the Kitt Peak ALMA 12-m Prototype Antenna, starting winter 2019

TIME in a nutshell

TIME Collaboration

Abigail Crites, Jamie Bock, Matt Bradford, Tzu-Ching Chang, Yun-Ting Cheng, Steve Halley-Dunsheath,

Ben Hoscheit, Jonathan Hunacek, Lorenzo Moncelsi, Roger O'Brient, Guochao Jason Sun (Caltech/JPL)

Chao-Te Li, Da-Shun Wei (ASIAA), Victoria Butler, Mike Zemcov (RIT)

Ryan Keenan, Dan Marrone, Issac Trumper (Arizona), Bade Uzgil (NRAO), Asantha

Cooray (UCI)

TIME Lightcone

TIME collaboration

TIME traces the 3D large-scale cosmic structures via [CII] and CO and measures the luminosity-weighted density field

Astrophysics: L(M) Cosmology: P_L(k, z)

TIME Instrument

TIME engineering run @APA

TIME on APA!

[CII] at high-z

-1.5 $\log[\phi(L_{\mathrm{CII}})/\mathrm{Mpc^{-3}\,dex^{-1}}]$ -2.0-2.5-3.0Aravena+16 -3.5Yamaguchi+18 Capak+15 -4.5 $z\sim 0$ $L_{\mathrm{CII}} = 0.005 L_{\mathrm{UV}}$ -5.010 $\log(L_{\rm CII}/L_{\odot})$

De Looze et al. 2014

TIME collaboration

- [CII] is a major coolant in ISM, a tracer of Star formation activities.
- $L_{[CII]}/L_{FIR}$ appears to be ~0.001 0.01 at high-z from recent ALMA observations (Aravena et al. 2016, Capak et al. 2015)
- ALMA starts to constrain 108.5-9 L_{sun} systems (Aravena et al. 2016, Hayatsu+17)

TIME forecast:

[CII], CO Power Spectra

- [CII]/CO intensity mapping constrains the integral of luminosity function via clustering and shot-noise power spectrum
- Power spectra SNR ~ 10, including estimated signal reduction due to observing strategy, survey geometry, atmospheric and continuum contaminations.

TIME collaboration (Sun et al., in prep)

TIME forecast:

Cosmic [CII] abundance

TIME collaboration (Sun et al., in prep)

TIME forecast: SFR constraints at high-z

TIME forecast: Reionization history

TIME forecast: [CII] x LAE cross correlation

- [CII] x LAEs from the HSC SILVERRUSH survey at z=5.7
- Currently optimizing the survey depth and geometry for CO, [CII] and [CII]xLAE power spectra

TIME collaboration (Sun et al., in prep)

TIME forecast: [CII] x LAE cross correlation

- [CII] x LAEs from the HSC SILVERRUSH survey at z=5.7
- Currently optimizing the survey depth and geometry for CO, [CII] and [CII]xLAE power spectra

TIME collaboration (Sun et al., in prep)

TIME forecast: CO/H₂ abundance at z=0.5-2

TIME collaboration (Sun et al., in prep)

- TIME will measure multiple
 CO J rotational transitions at
 0.5 < z < 2
- Can be achieved via in-band cross-correlations of different J lines
- TIME will constrain the cosmic molecular hydrogen abundance across redshifts

Line de-confusion

- High-z [CII] and low-z CO lines can be confused in TIME.
- We are planning to use a combination of well-demonstrated techniques:
 - Masking bright, low-z sources: employed in CMB, CIB, EBL and studied for IM (e.g., Sun+18, Silva+17).
 - Use the anisotropic power spectrum shape of [CII] and CO (from observing to comoving coordinates) to distinguish the lines (Visbal & Loeb 2010; Gong+14; Lidz & Taylor 2016; Cheng+ 2016).
 - Cross-correlations of different lines at same redshift (e.g., Visbal & Loeb 2010; Gong+12, +17).
 - Cross-correlations with galaxy tracers (e.g., Chang+10, Masui+13, Pullen+13, +18).

CO, [CII] signal de-confusion: source masking

CO, [CII] signal de-confusion: Anisotropic power spectrum

- High-z [CII] and low-z CO rotational lines can be confused in TIME
- Use the redshiftdependence of CO and [CII] from observing to comoving coordinates to distinguish the lines (Lidz & Taylor 2016; Cheng et al. 2016).

Cheng, Chang, et al. 2016

[CII], Lya, Ha, 21cm Intensity Mapping: large-scale, 3D EoR probes

Density fluctuation z~7

Ionized IGM

scattering Lya,

(traced by

[CII]?)

Ionizing sources (traced by Ha, [CII])

Neutral IGM (traced by 21cm)

200 Mpc

Heneka et al., 2017

Spectral Line Intensity Mapping with SPHEREx

With SPHEREx Science Team

SPHEREx deep fields: Narrow-band Line Intensity Mapping

BAO expansion rate H(z)

Line Intensity Mapping with SPHEREx

Fluctuations in Line Emission

Power Spectra of Emission Lines

Doré et al., arXiv:1412.4872

- SPHEREx will measure statistically the fluctuations of multiple spectral lines associated with cosmic structures across redshift.
- SPHEREx will measure at high SNR the 3D clustering of multiple line tracers and the luminosity-weighted biases.

Line Intensity Mapping with SPHEREx

Fluctuations in Line Emission

Doré et al., arXiv:1412.4872

SFRD from Ha intensity mapping

Gong et al. 2017

- SPHEREx will map SFR through cosmic time up to z~5 via Hα Intensity Mapping.
- SPHEREx has the sensitivity to detect Ly α from EoR, inferring ionizing photon production.

21cm, Ha, Lya cross-correlations

Lya x 21cm

Heneka+ in prep

Ha x Lya

Heneka+ 17

Chang+ 15

21cm, Ha, Lya cross-correlations

10°

 $k[Mpc^{-1}]$

Heneka+ in prep.

101

-1.0

 10^{-1}

Tracing diffuse IGM Lya

21cm, Ha, Lya cross-correlations

10°

 $k[Mpc^{-1}]$

Heneka+ in prep.

101

-1.0

 10^{-1}

Tracing diffuse IGM Lya

Line Intensity Mapping with SPHEREx

- SPHEREx will produce 96 spectral images and map 3D intensity fluctuations of multiple line tracers across redshift.
- Simulation work on-going, including a 10 deg² lightcone of multiple emission lines $(H\alpha, H\beta, [OIII], [OII])$ at I < z < 10 plus stellar continuum using the Hidden Valley simulations, and Ly α analytical treatment of radiative transfer effects during EoR.

Line signal de-confusion

- High-z Ly α and low-z H α lines can be confused in SPHEREx in the IM regime.
- We are planning to use a combination of well-demonstrated techniques:
 - Masking bright, low-z sources: employed in CMB, CIB, EBL and studied for IM (e.g., Sun+16, Silva+17).
 - Use the anisotropic power spectrum shape of Lyα and Hα (from observing to comoving coordinates) to distinguish the lines (Visbal & Loeb 2010; Gong+14; Lidz & Taylor 2016; Cheng+ 2016).
 - Cross-correlations of different lines at same redshift (e.g., Visbal & Loeb 2010; Gong+12, +17).
 - Cross-correlations with galaxy tracers (e.g., Chang+10, Masui+13, Pullen+13, +17).